New experiments show Earth’s core may hold vast ‘oceans’ of an essential element for life

Scientists’ New Experiments Point to Vast ‘Oceans’ of Essential Life Element in Earth’s Core

Earth’s core might harbor immense concealed stores of hydrogen, a possibility that could overturn long‑standing ideas about the planet’s water origins, with a hidden cache beneath the surface potentially surpassing the volume of all existing oceans.This finding may radically shift current views of Earth’s formation and the true source of its water.

Far below the crust and mantle, at depths unreachable by drilling technology, Earth’s core remains one of the least accessible regions of our planet. Yet new scientific findings suggest that this remote and extreme environment may hold an extraordinary secret: a vast store of hydrogen potentially equivalent to several times the volume contained in all of Earth’s oceans. Researchers recently proposed that the core could harbor the equivalent of at least nine global oceans’ worth of hydrogen, and possibly as many as 45. If confirmed, this would make the core the largest hydrogen reservoir on Earth and significantly reshape prevailing theories about the planet’s early development and the origin of its water.

Hydrogen, the lightest and most abundant element in the universe, stands as a fundamental component in the chemistry of life and the evolution of planets. On Earth’s surface, it is most commonly encountered combined with oxygen in water. Yet, recent assessments suggest that large reserves of hydrogen could be sequestered deep within the metallic core, representing about 0.36% to 0.7% of its total mass. While that share might seem small, the core’s extraordinary scale and density ensure that even a tiny proportion corresponds to a vast amount of hydrogen.

These findings hold far-reaching consequences for interpreting when and by what processes Earth obtained its water, and they touch on a long-running debate over whether most of the planet’s water was delivered after its formation by impacts from comets and water-rich asteroids or whether hydrogen had already been built into Earth’s initial materials. The new research favors this second scenario, indicating that hydrogen existed as the planet was taking shape and became incorporated into the core during its earliest developmental stages.

Rethinking the origins of Earth’s water

More than 4.6 billion years ago, the solar system was a turbulent environment filled with dust, gas and rocky debris orbiting a young sun. Through countless collisions and gradual accumulation, these materials coalesced into larger bodies, eventually forming the terrestrial planets, including Earth. During this formative period, the planet differentiated into layers: a dense metallic core sank toward the center, while lighter materials formed the mantle and crust above.

For hydrogen to remain in the core today, it would have had to exist during that crucial phase of planetary development, when molten metal peeled away from silicate material and sank toward the center. During this descent, hydrogen needed to blend into the liquid iron alloy that ultimately formed the core, a step possible only if the element had already been embedded in the planet’s initial constituents or delivered early enough to join the core‑forming process.

If most of Earth’s hydrogen was present from the beginning, it suggests that water and volatile elements were not merely late additions delivered by cosmic impacts. Instead, they may have been fundamental components of the materials that assembled into the planet. Under this scenario, the core would have sequestered a large portion of the available hydrogen within the first million years of Earth’s history, long before the surface oceans stabilized.

This interpretation questions models that place heavy emphasis on comet-driven bombardment as the dominant origin of Earth’s water, suggesting instead that although impacts from icy bodies probably supplied some moisture and volatile materials, the updated estimates indicate that a significant portion of hydrogen was already incorporated into the planet’s deep interior during its earliest formation stages.

Probing an inaccessible frontier

Studying the composition of Earth’s core presents formidable challenges. The core begins nearly 3,000 kilometers beneath the surface and extends to the planet’s center, where temperatures rival those of the sun’s surface and pressures exceed millions of times atmospheric pressure. Direct sampling is impossible with current technology, forcing scientists to rely on indirect methods and laboratory simulations.

Hydrogen presents an especially challenging measurement issue, as its extremely small and light nature allows it to slip out of materials during experimentation. Its minute atomic scale also makes conventional analytical instruments struggle to detect it. For years, scientists tried to deduce hydrogen’s presence in the core by analyzing the density of iron subjected to intense pressures. The core exhibits a density slightly below that of pure iron and nickel, implying that lighter elements must be mixed in. Silicon and oxygen have traditionally been viewed as the primary possibilities, yet hydrogen has remained a persistent suspect.

Previous experimental strategies frequently depended on X-ray diffraction to examine how iron’s crystal lattice responds when hydrogen becomes embedded within it. As hydrogen diffuses into the atomic framework, the lattice expands in detectable ways. Yet the interpretation of these shifts has produced highly inconsistent estimates, spanning from minimal traces to exceptionally large quantities comparable to more than 100 ocean volumes. These discrepancies arose from methodological constraints and the inherent challenges of accurately reproducing genuine core conditions.

A new atomic-scale approach

To refine these estimates, researchers adopted a technique capable of observing materials at the atomic level. In laboratory experiments, they recreated the intense pressures and temperatures believed to exist in Earth’s deep interior. Using a device known as a diamond anvil cell, they compressed iron samples to extreme pressures and heated them with lasers until they melted, mimicking the molten metal of the early core.

After cooling the samples, scientists employed atom probe tomography, a method that allows for three-dimensional imaging and chemical analysis at near-atomic resolution. The samples were shaped into ultrafine needle-like structures, only tens of nanometers in diameter. By applying controlled voltage pulses, individual atoms were ionized and detected one by one, enabling researchers to directly measure the presence and distribution of hydrogen alongside other elements such as silicon and oxygen.

This approach differs fundamentally from earlier methods because it counts atoms directly rather than inferring hydrogen content from structural changes. The experiments revealed that hydrogen interacts closely with silicon and oxygen within iron under high-pressure conditions. Notably, the observed ratio between hydrogen and silicon in the experimental samples was approximately one to one.

By integrating this atomic-scale data with separate geophysical assessments of how much silicon is present in the core, the researchers derived a revised interval for hydrogen abundance, and their findings indicate that hydrogen comprises roughly 0.36% to 0.7% of the core’s mass, an amount that equates to several ocean volumes when described in more familiar terms.

Consequences for the magnetic field and the potential for planetary habitability

The presence of hydrogen within the core not only reframes existing ideas about how water reached the planet but also affects scientific views on the development of Earth’s magnetic field, as the core’s outer layer of molten metal circulates while releasing internal heat, a motion that produces the geomagnetic field responsible for protecting the planet from damaging solar and cosmic radiation.

Interactions among hydrogen, silicon, and oxygen within the core may have shaped how heat moved from the core to the mantle during the planet’s early evolution, and the way these lighter elements are arranged can alter density layers, phase changes, and the behavior of core convection. Should hydrogen have exerted a notable influence on these mechanisms, it might have helped lay the groundwork for the enduring magnetic field that made Earth a more life-friendly world.

Understanding how volatile elements like hydrogen are distributed also shapes wider models of planetary formation, and hydrogen — together with carbon, nitrogen, oxygen, sulfur, and phosphorus — is classified among the elements vital for life. The way these elements behave during planetary accretion dictates whether a planet acquires surface water, an atmosphere, and the chemical building blocks required for biology.

Weighing uncertainties and future directions

Despite the sophistication of the new experimental methods, uncertainties remain. Laboratory simulations can approximate but not perfectly replicate the conditions of Earth’s deep interior. Additionally, some hydrogen may escape from samples during decompression, potentially leading to underestimates. Other chemical interactions within the core, not fully captured in the experiments, could also alter hydrogen concentrations.

Some researchers point out that independent analyses have yielded hydrogen estimates in a comparable range, sometimes trending higher. Variations in experimental frameworks, assumptions regarding core makeup, and approaches to accounting for hydrogen loss can produce shifts in the resulting calculations. As analytical methods progress, upcoming studies may sharpen these estimates and further reduce existing uncertainties.

Geophysical observations may also provide indirect constraints. Seismic wave measurements, which reveal density and elastic properties of the core, can help test whether proposed hydrogen concentrations are consistent with observed data. Integrating laboratory results with seismic models will be crucial for building a comprehensive picture of the core’s composition.

A deeper perspective on Earth’s formation

If the proposed hydrogen levels are accurate, they reinforce the view that Earth’s volatile inventory was established early and distributed throughout its interior. Rather than being a late veneer delivered solely by icy impactors, hydrogen may have been present in the primordial materials that assembled into the planet. Gas from the solar nebula, along with contributions from asteroids and comets, likely played roles of varying importance.

The idea that the core contains the majority of Earth’s hydrogen also reframes how scientists think about the distribution of water within the planet. While oceans dominate the surface visually and biologically, they may represent only a small fraction of Earth’s total hydrogen budget. The mantle likely holds more, and the core could contain the largest share of all.

Earth’s profound interior is portrayed not as a fixed base lying under the crust but as a dynamic force shaping the planet’s chemical and thermal development, with the events set in motion during Earth’s earliest million years still molding its internal architecture, its magnetic field and its ability to sustain life.

As research progresses, the emerging picture is one of a planet whose defining characteristics were shaped from the inside out. By peering into the atomic architecture of iron under extreme conditions, scientists are gradually revealing how the smallest element in the periodic table may have played an outsized role in shaping Earth’s destiny.

By Anna Edwards

You May Also Like